fly wonogiri
Paragliding is the recreational and competitive adventure sport of flying paragliders: lightweight, free-flying, foot-launched glider aircraft with no rigid primary structure. The pilot sits in a harness suspended below a fabric wing comprising a large number of interconnected baffled cells. Wing shape is maintained by the suspension lines, the pressure of air entering vents in the front of the wing, and the aerodynamic forces of the air flowing over the outside.

Despite not using an engine, paragliders flight can last many hours and cover many hundreds of kilometers, though flights of one to two hours and covering some tens of kilometers are more the norm. By skillful exploitation of sources oflift, the pilot may gain height, often climbing to altitudes of a few thousand meters.

History

In 1952, Domina Jalbert advanced governable gliding parachutes with multi-cells and controls for lateral glide.
In 1954, Walter Neumark predicted (in an article in Flight magazine) a time when a glider pilot would be "able to launch himself by running over the edge of a cliff or down a slope ... whether on a rock-climbing holiday in Skye or ski-ing in the Alps."
In 1961, the French engineer Pierre Lemoigne produced improved parachute designs that led to the Para-Commander. The PC had cutouts at the rear and sides that enabled it to be towed into the air and steered – leading to parasailing/parascending.
Canadian Domina Jalbert invented the Parafoil, which had sectioned cells in an aerofoil shape; an open leading edge and a closed trailing edge, inflated by passage through the air – the ram-air design. He filed US Patent 3131894 on January 10, 1963.
Land-based practice: Kiting
About that same time, David Barish was developing the "sail wing" (single-surface wing) for recovery of NASA space capsules – "slope soaring was a way of testing out ... the Sail Wing." After tests on Hunter Mountain, New York, in September 1965, he went on to promoteslope soaring as a summer activity for ski resorts.
Author Walter Neumark wrote Operating Procedures for Ascending Parachutes, and he and a group of enthusiasts with a passion for tow-launching PCs and ram-air parachutes eventually broke away from the British Parachute Association to form the British Association of Parascending Clubs (BAPC) in 1973. Authors Patrick Gilligan (Canada) and Bertrand Dubuis (Switzerland) wrote the first flight manual,The Paragliding Manual in 1985, officially coining the word paragliding.
These developments were combined in June 1978 by three friends, Jean-Claude Bétemps, André Bohn and Gérard Bosson, from Mieussy, Haute-Savoie, France. After inspiration from an article on slope soaring in the Parachute Manual magazine by parachutist and publisher Dan Poynter, they calculated that on a suitable slope, a "square" ram-air parachute could be inflated by running down the slope; Bétemps launched from Pointe du Pertuiset, Mieussy, and flew 100 m. Bohn followed him and glided down to the football pitch in the valley 1000 metres below."Parapente" (pente being French for "slope") was born.
From the 1980s, equipment has continued to improve, and the number of paragliding pilots and established sites has continued to increase. The first (unofficial) Paragliding World Championship was held in Verbier, Switzerland, in 1987, though the first officially sanctioned FAI World Championship was held in Kössen, Austria, in 1989.
Europe has seen the greatest growth in paragliding, with France alone currently registering over 25,000 active pilots.
Foot-launched powered hang glider associations exist worldwide, with the US Hang Gliding & Paragliding Association and the British Hang Gliding and Paragliding Association(BHPA) being two of the largest.

Equipment

Wing

Cross section of a paraglider
Transverse cross section showing parts of a paraglider:
1) upper surface
2) lower surface
3) rib
4) diagonal rib
5) upper line cascade
6) middle line cascade
7) lower line cascade
8) risers
The paraglider wing or canopy is usually what is known in aeronautical engineering as a "ram-air airfoil". Such wings comprise two layers of fabric that are connected to internal supporting material in such a way as to form a row of cells. By leaving most of the cells open only at the leading edge, incoming air keeps the wing inflated, thus maintaining its shape. When inflated, the wing's cross-section has the typical teardrop aerofoil shape. Modern paraglider wings are made of high-performance non-porous materials such as ripstop polyester ornylon fabric.
In some modern paragliders (from the 1990s onwards), especially higher-performance wings, some of the cells of the leading edge are closed to form a cleaner aerodynamic profile. Holes in the internal ribs allow a free flow of air from the open cells to these closed cells to inflate them, and also to the wingtips, which are also closed.
The pilot is supported underneath the wing by a network of suspension lines. These start with two sets of risers made of short (40 cm) lengths of strong webbing. Each set is attached to the harness by a carabiner, one on each side of the pilot, and each riser of a set is generally attached to lines from only one row of its side of wing. At the end of each riser of the set, there is a small delta maillon with a number (2-5) of lines attached, forming a fan. These are typically 4–5 metres long, with the end attached to 2−4 further lines of around 2 m, which are again joined to a group of smaller, thinner lines. In some cases this is repeated for a fourth cascade.
The top of each line is attached to small fabric loops sewn into the structure of the wing, which are generally arranged in rows running span-wise (i.e., side to side). The row of lines nearest the front are known as the A lines, the next row back the B lines, and so on.[14] A typical wing will have A, B, C and D lines, but recently, there has been a tendency to reduce the rows of lines to three, or even two (and experimentally to one), to reduce drag.
Paraglider lines are usually made from Dyneema/Spectra or Kevlar/Aramid. Although they look rather slender, these materials are immensely strong. For example, a single 0.66 mm-diameter line (about the thinnest used) can have a breaking strength of 56 kg.
Paraglider wings typically have an area of 20–35 square metres (220–380 sq ft) with a span of 8–12 metres (26–39 ft) and weigh 3–7 kilograms (6.6–15.4 lb). Combined weight of wing, harness, reserve, instruments, helmet, etc. is around 12–22 kilograms (26–49 lb).
The glide ratio of paragliders ranges from 9.3 for recreational wings to about 11.3 for modern competition models,reaching in some cases up to 13. For comparison, a typical skydiving parachute will achieve about 3:1 glide. A hang glider ranges from 9.5 for recreational wings to about 16.5 for modern competition models. An idling (gliding) Cessna 152 light aircraft will achieve 9:1. Some sailplanes can achieve a glide ratio of up to 72:1.
The speed range of paragliders is typically 20–75 kilometres per hour (12–47 mph), from stall speed to maximum speed. Beginner wings will be in the lower part of this range, high-performance wings in the upper part of the range.
For storage and carrying, the wing is usually folded into a stuffsack (bag), which can then be stowed in a large backpack along with the harness. For pilots who may not want the added weight or fuss of a backpack, some modern harnesses include the ability to turn the harness inside out such that it becomes a backpack.
Paragliders are unique among human-carrying aircraft in being easily portable. The complete equipment packs into a rucksack and can be carried easily on the pilot's back, in a car, or on public transport. In comparison with other air sports, this substantially simplifies travel to a suitable takeoff spot, the selection of a landing place and return travel.
Tandem paragliders, designed to carry the pilot and one passenger, are larger but otherwise similar. They usually fly faster with higher trim speeds, are more resistant to collapse, and have a slightly higher sink rate compared to solo paragliders.

Harness

A pilot with harness (light blue), performing a reverse launch
The pilot is loosely and comfortably buckled into a harness, which offers support in both the standing and sitting positions. Most harnesses have foam or airbag protectors underneath the seat and behind the back to reduce the impact on failed launches or landings. Modern harnesses are designed to be as comfortable as a lounge chair in the sitting position. Many harnesses even have an adjustable "lumbar support". A reserve parachute is also typically connected to a paragliding harness.

Instruments

Most pilots use variometers, radios, and, increasingly, GPS units when flying.
Variometer
Main article: Variometer
The main purpose of a variometer is in helping a pilot find and stay in the "core" of a thermal to maximise height gain and, conversely, to indicate when a pilot is in sinking air and needs to find rising air. Humans can sense the acceleration when they first hit a thermal, but cannot detect the difference between constant rising air and constant sinking air. Modern variometers are capable of detecting rates of climb or sink of 1 cm per second. A variometer indicates climb rate (or sink-rate) with short audio signals (beeps, which increase in pitch and tempo during ascent, and a droning sound, which gets deeper as the rate of descent increases) and/or a visual display. It also showsaltitude: either above takeoff, above sea level, or (at higher altitudes) flight level.
Radio
Radio communications are used in training, to communicate with other pilots, and to report where and when they intend to land. These radios normally operate on a range of frequencies in different countries—some authorised, some illegal but tolerated locally. Some local authorities (e.g., flight clubs) offer periodic automated weather updates on these frequencies. In rare cases, pilots use radios to talk to airport control towers or air traffic controllers. Many pilots carry a cell phone so they can call for pickup should they land away from their intended point of destination.
GPS
GPS (global positioning system) is a necessary accessory when flying competitions, where it has to be demonstrated that way-points have been correctly passed. The recorded GPS track of a flight can be used to analyze flying technique or can be shared with other pilots. GPS is also used to determine drift due to the prevailing wind when flying at altitude, providing position information to allow restricted airspace to be avoided and identifying one’s location for retrieval teams after landing out in unfamiliar territory. GPS is integrated with some models of variometer. This is not only more convenient, but also allows for a three-dimensional record of the flight. The flight track can be used as proof for record claims, replacing the "old" method of photo documentation.

Flying

3d CAD drawing of a paraglider3d CAD drawing of a paraglider showing the upper surface in green, the lower surface in blue and the leading edge openings in pink. Only the left half of the suspension cone is shown.

Launching

Paraglider towed launch,MirosławicePoland
Paraglider in SopelanaBiscay,Basque Country
As with all aircraft, launching and landing are done into wind. The wing is placed into an airstream, either by running or being pulled, or an existing wind. The wing moves up over the pilot into a position in which it can carry the passenger. The pilot is then lifted from the ground and, after a safety period, can sit down into his harness. Unlike skydivers, paragliders, like hang gliders, do not "jump" at any time during this process. There are two launching techniques used on higher ground and one assisted launch technique used in flatland areas:

Forward launch

In low winds, the wing is inflated with a forward launch, where the pilot runs forward with the wing behind so that the air pressure generated by the forward movement inflates the wing.
It is often easier, because the pilot only has to run forward, but the pilot cannot see his wing until it is above him, where he has to check it in a very short time for correct inflation and untangled lines before the launch.

Reverse launch

File:Paraglider launch Mam Tor.ogg
Paraglider reverse launch, 
Mam Tor,England
In higher winds, a reverse launch is used, with the pilot facing the wing to bring it up into a flying position, then turning around under the wing and running to complete the launch.
Reverse launches have a number of advantages over a forward launch. It is more straightforward to inspect the wing and check if the lines are free as it leaves the ground. In the presence of wind, the pilot can be tugged toward the wing, and facing the wing makes it easier to resist this force and safer in case the pilot slips (as opposed to being dragged backwards). However, the movement pattern is more complex than forward launch, and the pilot has to hold the brakes in a correct way and turn to the correct side so he does not tangle the lines. These launches are normally attempted with a reasonable wind speed, making the ground speed required to pressurise the wing much lower – the pilot is initially launching while walking forwards as opposed to running backward.

Towed launch

File:Parapente.ogg
Paraglider launching in 
Araxá,Brazil
In flatter countryside, pilots can also be launched with a tow. Once at full height (towing can launch pilots up to 3000 feet altitude), the pilot pulls a release cord, and the towline falls away. This requires separate training, as flying on a winch has quite different characteristics from free flying. There are two major ways to tow: pay-in and pay-out towing. Pay-in towing involves a stationary winch that winds in the towline and thereby pulls the pilot in the air. The distance between winch and pilot at the start is around 500 meters or more. Pay-out towing involves a moving object, like a car or a boat, that pays out line slower than the speed of the object, thereby pulling the pilot up in the air. In both cases, it is very important to have a gauge indicating line tension to avoid pulling the pilot out of the air. Another form of towing is "static line" towing. This involves a moving object, like a car or a boat, attached to a paraglider or hang glider with a fixed-length line. This can be very dangerous, because now the forces on the line have to be controlled by the moving object itself, which is almost impossible to do, unless stretchy rope and a pressure/tension meter (dynamometer) is used. Static line towing with stretchy rope and a load cell as a tension meter has been used in Poland, Ukraine, Russia, and other Eastern European countries for over twenty years (under the nameMalinka) with about the same safety record as other forms of towing.One more form of towing is hand towing. This is where 1−3 people pull a paraglider using a tow rope of up to 500 feet. The stronger the wind, the fewer people are needed for a successful hand tow. Tows up to 300 feet have been accomplished, allowing the pilot to get into a lift band of a nearby ridge or row of buildings and ridge-soar in the lift the same way as with a regular foot launch.

Landing

Landing a paraglider, as with all unpowered aircraft which cannot abort a landing, involves some specific techniques and traffic patterns.

Traffic pattern

Unlike during launch, where coordination between multiple pilots is straightforward, landing involves more planning, because more than one pilot might have to land at the same time. Therefore, a specific traffic pattern has been established. Pilots line up into a position above the airfield and to the side of the landing area, which is dependent on the wind direction, where they can lose height (if necessary) by flying circles. From this position, they follow the legs of a flightpath in a rectangular pattern to the landing zone: downwind leg, base leg, and final approach. This allows for synchronization between multiple pilots and reduces the risk of collisions, because a pilot can anticipate what other pilots around him are going to do next.

Techniques

Landing involves lining up for an approach into wind and, just before touching down, "flaring" the wing to minimise vertical and/or horizontal speed. This consists of gently going from 0% brake at around two meters to 100% brake when touching down on the ground.
In light winds, some minor running is common. In moderate to medium headwinds, the landings can be without forward speed, or even going backwards with respect to the ground in strong winds, but this would usually mean that the conditions were too strong for that glider.
Additionally, at around four meters before touching ground, some momentary braking (50% for around two seconds) can be applied then released, thus using forward pendular momentum to gain speed for flaring more effectively and approaching the ground with minimal vertical speed.
For strong winds during landing, two techniques are common: the first, "flapping" the wing to make it lose performance and thus descend faster by alternatively braking and releasing around once per second (though the danger of inducing a stall during this manoeuvre makes it an "experts only" technique), and the second, collapsing the wing immediately after touchdown to avoid being dragged, by either braking at maximum or quickly turning around and pulling down the D-risers (the last set of risers from the leading edge).

Control

Speedbar mechanism
Brakes: Controls held in each of the pilot’s hands connect to the trailing edge of the left and right sides of the wing. These controls are called "brakes" and provide the primary and most general means of control in a paraglider. The brakes are used to adjust speed, to steer (in addition to weight shift), and to flare (during landing).
Weight Shift: In addition to manipulating the brakes, a paraglider pilot must also lean in order to steer properly. Such weight shifting can also be used for more limited steering when brake use is unavailable, such as when under "big ears" (see below). More advanced control techniques may also involve weight shifting.
Speed Bar: A kind of foot control called the "speed bar" (also "accelerator") attaches to the paragliding harness and connects to the leading edge of the paraglider wing, usually through a system of at least two pulleys (see animation in margin). This control is used to increase speed and does so by decreasing the wing's angle of attack. This control is necessary because the brakes can only slow the wing from what is called "trim speed" (no brakes applied). The accelerator is needed to go faster than this.
More advanced means of control can be obtained by manipulating the paraglider's risers or lines directly. Most commonly, the lines connecting to the outermost points of the wing's leading edge can be used to induce the wingtips to fold under. The technique, known as "big ears", is used to increase rate of descent (see picture and the full description below). The risers connecting to the rear of the wing can also be manipulated for steering if the brakes have been severed or are otherwise unavailable. For ground-handling purposes, a direct manipulation of these lines can be more effective and offer more control than the brakes. The effect of sudden wind blasts can be countered by directly pulling on the risers and making the wing unflyable, thereby avoiding falls or unintentional takeoffs.

Fast descents

Problems with “getting down” can occur when the lift situation is very good or when the weather changes unexpectedly. There are three possibilities of rapidly reducing altitude in such situations, each of which has benefits and issues to be aware of. The "big ears" maneuver induces descent rates of 2.5 to 3.5 m/s, 4–6 m/s with additional speed bar. It is the most controllable of the techniques and the easiest for beginners to learn. The B-line stall induces descent rates of 6–10 m/s. It increases loading on parts of the wing (the pilot's weight is mostly on the B-lines, instead of spread across all the lines). Finally, a spiral dive offers the fastest rate of descent, at 7–25 m/s. It places greater loads on the wing than other techniques do and requires the highest level of skill from the pilot to execute safely.
Big ears
Paraglider in "Big Ears" maneuver
Pulling on the outer A-lines during non-accelerated, normal flight folds the wing tips inwards, which substantially reduces the glide angle with only a small decrease in forward speed. As the effective wing area is reduced, the wing loading is increased, and it becomes more stable. However, the angle of attack is increased, and the craft is closer to stall speed, but this can be ameliorated by applying the speed bar, which also increases the descent rate. When the lines are released, the wing re-inflates. If necessary, a short pumping on the brakes helps reentering normal flight. Compared to the other techniques, with big ears, the wing still glides forward, which enables the pilot to leave an area of danger. Even landing this way is possible, e.g., if the pilot has to counter an updraft on a slope.
B-line stall
In a B-line stall, the second set of risers from the leading-edge/front (the B-lines) are pulled down independently of the other risers, with the specific lines used to initiate a stall. This puts a spanwise crease in the wing, thereby separating the airflow from the upper surface of the wing. It dramatically reduces the lift produced by the canopy and thus induces a higher rate of descent. This can be a strenuous maneuver, because these B-lines have to be held in this position, and the tension of the wing puts an upwards force on these lines. The release of these lines has to be handled carefully not to provoke a too fast forward shooting of the wing, which the pilot then could fall into.
Spiral dive
The spiral dive is the most rapid form of controlled fast descent; an aggressive spiral dive can achieve a sink rate of 25 m/s. This maneuver halts forward progress and brings the flier almost straight down. The pilot pulls the brakes on one side and shifts his weight onto that side to induce a sharp turn. The flight path then begins to resembles a corkscrew. After a specific downward speed is reached, the wing points directly to the ground. When the pilot reaches his desired height, he ends this maneuver by slowly releasing the inner brake, shifting his weight to the outer side and braking on this side. The release of the inner brake has to be handled carefully to end the spiral dive gently in a few turns. If done too fast, the wing translates the turning into a dangerous upward and pendular motion.
Spiral dives put a strong G-force on the wing and glider and must be done carefully and skilfully. The G-forces involved can induce blackouts, and the rotation can producedisorientation. Some high-end gliders have what is called a "stable spiral problem". After inducing a spiral and without further pilot input, some wings do not automatically return to normal flight and stay inside their spiral. Serious injury and fatal accidents did occur when pilots could not exit this maneuver and spiraled into the ground.

Soaring

Ridge soaring along the California coast
Soaring flight is achieved by utilizing wind directed upwards by a fixed object such as a dune or ridge. In slope soaring, pilots fly along the length of a slope feature in the landscape, relying on the lift provided by the air, which is forced up as it passes over the slope. Slope soaring is highly dependent on a steady wind within a defined range (the suitable range depends on the performance of the wing and the skill of the pilot). Too little wind, and insufficient lift is available to stay airborne (pilots end up scratching along the slope). With more wind, gliders can fly well above and forward of the slope, but too much wind, and there is a risk of being blown back over the slope. A particular form of ridge soaring is "condo soaring", where pilots soar a row of buildings that form an artificial "ridge". This form of soaring is particularly used in flat lands where there are no natural ridges, but there are plenty of man-made, building "ridges".

Thermal flying

Paragliders in the air at Torrey Pines Gliderport
When the sun warms the ground, it will warm some features more than others (such as rock faces or large buildings), and these set off thermals which rise through the air. Sometimes these may be a simple rising column of air; more often, they are blown sideways in the wind and will break off from the source, with a new thermal forming later.
Once a pilot finds a thermal, he begins to fly in a circle, trying to center the circle on the strongest part of the thermal (the "core"), where the air is rising the fastest. Most pilots use a vario-altimeter("vario"), which indicates climb rate with beeps and/or a visual display, to help core in on a thermal.
Often there is strong sink surrounding thermals, and there is also strong turbulence resulting in wing collapses as a pilot tries to enter a strong thermal. Good thermal flying is a skill that takes time to learn, but a good pilot can often core a thermal all the way to cloud base.

Cross-country flying

Once the skills of using thermals to gain altitude have been mastered, pilots can glide from one thermal to the next to go cross country. Having gained altitude in a thermal, a pilot glides down to the next available thermal.
Potential thermals can be identified by land features that typically generate thermals or by cumulus clouds, which mark the top of a rising column of warm, humid air as it reaches the dew point and condenses to form a cloud.
Cross-country pilots also need an intimate familiarity with air law, flying regulations, aviation maps indicating restricted airspace, etc.

In-flight wing deflation (collapse)

Since the shape of the wing (airfoil) is formed by the moving air entering and inflating the wing, in turbulent air, part or all of the wing can deflate (collapse). Piloting techniques referred to as "active flying" will greatly reduce the frequency and severity of deflations or collapses. On modern recreational wings, such deflations will normally recover without pilot intervention. In the event of a severe deflation, correct pilot input will speed recovery from a deflation, but incorrect pilot input may slow the return of the glider to normal flight, so pilot training and practice in correct response to deflations are necessary.
For the rare occasions when it is not possible to recover from a deflation (or from other threatening situations such as a spin), most pilots carry a reserve (rescue, emergency) parachute; however, most pilots never have cause to "throw" their reserve. Should a wing deflation occur at low altitude, i.e., shortly after takeoff or just before landing, the wing (paraglider) may not recover its correct structure rapidly enough to prevent an accident, with the pilot often not having enough altitude remaining to deploy a reserve parachute [with the minimum altitude for this being approximately 60 m (200 ft), but typical deployment to stabilization periods using up 120–180 m (390–590 ft) of altitude] successfully. Different packing methods of the reserve parachute affect its deploying time.
Low-altitude wing failure can result in serious injury or death due to the subsequent velocity of a ground impact where, paradoxically, a higher altitude failure may allow more time to regain some degree of control in the descent rate and, critically, deploy the reserve if needed. In-flight wing deflation and other hazards are minimized by flying a suitable glider and choosing appropriate weather conditions and locations for the pilot's skill and experience level.

As a competitive sport

Practicing paragliding in Pegalajar(Jaén - Spain)
There are various disciplines of competitive paragliding:
  • Cross-country flying is the classical form of paragliding competitions with championships in club, regional, national and international levels (see PWC).
  • Aerobatic competitions demand the participants to perform certain manoeuvres. Competitions are held for individual pilots as well as for pairs that show synchronous performances. This form is the most spectacular for spectators on the ground to watch.
  • Bivouac flying competitions in which a certain route has to be flown or hiked only over several days: Red Bull X-Alps - the unofficial world championship in this category of competition was held for the seventh time in 2015.
In addition to these organized events it is also possible to participate in various online contests that require participants to upload flight track data to dedicated websites like OLC.

Safety

File:Decolagemparapente.ogg
Paraglider launch
 video in Araxá, Brazil
Paragliding, like any extreme sport, is a potentially dangerous activity. In the United States, for example, in 2010 (the last year for which details are available), one paraglider pilot died. This is an equivalent rate of two in 10,000 pilots. Over the years 1994−2010, an average of seven in every 10,000 active paraglider pilots have been fatally injured, though with a marked improvement in recent years. In France (with over 25,000 registered fliers), two of every 10,000 pilots were fatally injured in 2011 (a rate that is not atypical of the years 2007−2011), although around six of every 1,000 pilots were seriously injured (more than two-day hospital stay).
The potential for injury can be significantly reduced by training and risk management. The use of proper equipment such as a wing designed for the pilot's size and skill level, as well as a helmet, a reserve parachute, and a cushioned harness also minimize risk. The pilot's safety is influenced by his understanding of the site conditions such as air turbulence (rotors), strong thermals, gusty wind, and ground obstacles such as power lines. Sufficient pilot training in wing control and emergency manoeuvres from competent instructors can minimize accidents. Many paragliding accidents are the result of a combination of pilot error and poor flying conditions.


0


PENGARUH TEKNOLOGI TERHADAP REMAJA DI CILEGON

Masa remaja adalah masa peralihan dari anak-anak menuju proses pendewasaan, biasanya orang-orang bilang sebagai proses mencari jati dirinya.
Masa remaja ini identik dengan  rasa ingin tahu yang tinggi. Masa-masa kepo tingkat dewa ini biasanya para remaja mulai mencari informasi dan main mulai agak jauh dari rumah,

Pada masa sekarang, para remaja dengan sangat mudah mendapatkan informasi tentang apa yang mereka suka dan mereka inginkan. karena perkembangan teknologi sekarang ini hampir semua kalangan sudah dapat menikmatinya. mulai dari anak balita sampai kepada orang tua. terlebih lagi dengan teknologi yang bersifat untuk mendapatkan informasi terkini, sekarang sangat dengan mudahnya didapatkan.

Tentu saja dengan perkembangan teknologi yang begitu cepat, ada dampak baik dan buruknya bagi para remaja di kota cilegon.
peran orang tua sangat dibutuhkan untuk mengontrol aktivitas anak. karena jika tanpa pengawasan dari orang tua, para remaja dikhawatirkan akan mendapatkan informasi dan pergaulan yang buruk.

Beberapa contoh dampak buruknya yang terjadi pada remaja di cilegon:
1. kecanduan dengan game online yang membuat para remaja malas untuk belajar, mereka lebih      
    tertarik untuk bermain game dan waktunya dihabiskan untuk bermain game.
2. kecanduan menonton film porno
3. berpakaian mini pada remaja putri karena mengikuti trend masa kini dari negara luar, hal ini    
    berbahaya bagi mereka, dikhawatirkan menjadi korban pemerkosaan. dan masih banyak contoh    
    yang lainnya

Beberapa contoh dampak positif  yang terjadi pada remaja di cilegon :
1. dengan mudah mengakses bahan pelajaran yang dicari
2. bisa berkomunikasi dan berinteraksi dengan dunia luar
3. memudahkan dalam penyelesaian pekerjaan yang sedang dikerjakan. dan masih banyak lagi  
    dampak positif yang lainnya

Dari semua dampak dampak yang terjadi pada remaja di cilegon, lebih banyak dampak positifnya.
karena banyak para remaja di cilegon yang dengan mudah mengakses ilmu pengetahuan yang tak terbatas, sehingga timbul anak anak bangsa yang cerdas dan siap bersaing dengan dunia luar.


gunakanlah ilmu pengetahuan dan teknologi yang bermanfaat sebaik-baiknya supaya kita menjadi manusia yang berguna bagi keluarga, nusa, bangsa dan agama
0
Landmark

Kota Cilegon adalah sebuah kota di Provinsi BantenIndonesia. Cilegon berada di ujung barat laut pulau Jawa, di tepi Selat Sunda. Kota Cilegon dikenal sebagai kota industri. Sebutan lain bagi Kota Cilegon adalah Kota Baja mengingat kota ini merupakan penghasil baja terbesar di Asia Tenggara karena sekitar 6 juta ton baja dihasilkan tiap tahunnya di Kawasan Industri Krakatau Steel, Cilegon. Di Kota Cilegon terdapat berbagai macam objek vital negara antara lain Pelabuhan Merak, Pelabuhan Cigading Habeam Centre, Kawasan Industri Krakatau SteelPLTU Suralaya, PLTU Krakatau Daya Listrik, Krakatau Tirta Industri Water Treatment Plant, (Rencana Lot) Pembangunan Jembatan Selat Sunda dan (Rencana Lot) Kawasan Industri Berikat Selat Sunda.


Perkembangan Pemerintahan

Berdasarkan pasal 72 ayat (4) Undang-Undang Nomor 5 Tahun 1974 tentang Pokok-Pokok Pemerintahan di Daerah, Cilegon sudah memenuhi persyaratan dibentuknya Kota Administratif. Atas usul Pemerintah Daerah Tingkat II Serang No.86/Sek/Bapp/VII/84 tentang usulan pembentukan Kota Administratif Cilegon dan atas pertimbangan yang obyektif, maka dikeluarkan Peraturan Pemerintah No.40 Tahun 1986 tanggal 17 September 1986, tentang Pembentukan Kota Administratif Kota Cilegon. Juga ditetapkan luas Kota Cilegon adalah 17.550 Ha yang meliputi 3 (tiga) wilayah kecamatan, yaitu Kecamatan Pulo Merak, Ciwandan, Cilegon dan 1 (satu) Perwakilan Kecamatan Cilegon di Cibeber. Sedangkan Kecamatan Bojonegara masuk wilayah kerja pembantu Bupati Wilayah Kramatwatu.
Di dalam Undang-Undang No.5 tahun 1974 tentang Pokok-Pokok Pemerintahan di Daerah disebutkan bahwa syarat-syarat pembentukan daerah otonom mengikuti kemampuan ekonomi, jumlah penduduk, luas wilayah, pertahanan dan keamanan, politik, serta persyaratan tambahan lainnya.
Berdasarkan PP No. 3 Tahun 1992 tertanggal 7 Februari 1992 tentang Penetapan Perwakilan Kecamatan Cibeber, Kota Administratif Cilegon bertambah menjadi 4 (empat) Kecamatan yaitu Pulomerak, Ciwandan, Cilegon dan Cibeber.

Dengan ditetapkannya dan disahkannya UU No. 15 tahun 1999 tanggal 27 April 1999 tentang pembentukan Kotamadya Daerah Tingkat II Depok dan Kotamadya Daerah Tingkat II Cilegon, status Kota Administratif Cilegon berubah menjadi Kotamadya Cilegon, dengan duet kepemimpinan Drs. H. Tb. Rifai Halir sebagai Pejabat Walikota Cilegon dan H. Zidan Rivai sebagai Ketua DPRD Cilegon.

Pembagian Administratif

Berdasarkan administrasi pemerintahan, Kota Cilegon memiliki luas wilayah ±17.550 Ha terbagi atas 8 (delapan) Kecamatan berdasarkan Peraturan Daerah (Perda) No.15 Tahun 2002 Tentang Pembentukan 4 (empat) Kecamatan baru, wilayah Kota Cilegon yang semula terdiri dari 4 (empat) kecamatan berubah menjadi 8 (delapan) Kecamatan, yaitu :
  • Kecamatan Cilegon
  • Kecamatan Ciwandan
  • Kecamatan Pulomerak
  • Kecamatan Cibeber
  • Kecamatan Grogol
  • Kecamatan Purwakarta
  • Kecamatan Citangkil
  • Kecamatan Jombang

Fasilitas dan Sarana Pendukung Kota

Permukiman

Di Kota Cilegon banyak sekali perumahan yang berbasis rumah dinas. Hal ini dikarenakan di Kota Cilegon terdapat banyak sekali perusahaan yang membutuhkan banyak karyawan. Permukiman di Kota Cilegon dikelola oleh berbagai developer. Selain itu terdapat pula permukiman khusus bagi kaum ekspatriat. Permukiman kaum ekspatriat barat (Meksiko, Australia, Amerika Serikat dan Perancis) terdapat di Kawasan Bonakarta, sedangkan permukiman kaum ekspatriat timur (terutama orang Korea dan Jepang) berada di suatu cluster di Pondok Cilegon Indah. Sedangkan permukiman bagi warga Krakatau Steel terdapat di Komplek Perumahan Karyawan Krakatau Steel (Rumah Dinas), Propelat (Rumah Dinas), Bukit Baja Sejahtera, Palm Hills, dan Komplek Perumahan Krakatau Grogol Selain itu terdapat pula permukiman seperti Istana Cilegon, Pondok Cilegon Indah dan berbagai macam cluster komplek perumahan lainnya.

Pusat Perbelanjaan

Di Kota Cilegon terdapat berbagai macam pusat perbelanjaan seperti Cilegon Supermall (Mayofield Mall Cilegon), Super Indo, Hypermart, Ramayana Mall & Robinson Supermarket, Edi Toserba, Cilegon Plaza Mandiri (Foodhall), Giant Hypermarket, dan Krakatau Junction.

Tempat Ibadah

Di Kota Cilegon terdapat berbagai macam masjid dengan berbagai bentuk dan ukuran. Masjid yang paling terkenal adalah Masjid Agung Cilegon atau Masjid Agung Nurul Ikhlas, masjid ini memiliki ketinggian lebih dari 40 meter pada ke empat minaretnya. Masjid lain yang cukup terkenal adalah Masjid Sumpah, dan Masjid Asy-Syuhada.

Olahraga

Fasilitas Olahraga yang terdapat di Kota Cilegon antara lain Stadion Krakatau Steel, Stadion Sumampir, Kolam Renang Krakatau Country Club (Olympic Size), Cilegon Waterpark, Lapangan Serbaguna Bapor, Padang Golf Krakatau Country Club, Krakatau Bike Park, Trek MTB, Krakatau Sailing Club, dan Krakatau Junction Infinite Jogging Track.

Taman Kota

Taman Kota di Cilegon masih sangat terbatas dan hanya berupa tutupan hijau yang merupakan bagian dari komplek gedung pemerintahan. Taman Kota yang berfungsi sekaligus sebagai fasilitas olahraga adalah Krakatau Junction Infinite Jogging Track yang merupakan tutupan hijau luas di tengah Kota Cilegon.

Transportasi

Dalam Kota

Terminal Terpadu Merak,Cilegon
Di Kota Cilegon terdapat berbagai macam transportasi dalam kota mulai dari angkot, becak, bus, hingga ojek. Terdapat tiga rute angkot dengan empat pembagian warna yang melayani perjalanan di dalam Kota Cilegon yaitu Silver (Jurusan Anyer), Merah (Jurusan Merak), Ungu (Jurusan PCI) dan Kuning (Jurusan Mancak). Transportasi lain yang sering dipakai adalah Taksi. Satu-satunya perusahaan taksi yang beroperasi di Kota Cilegon adalah perusahaan Blue Bird (subsidiaries "Pusaka Banten"). Di beberapa daerah transportasi ojek dan becak masih dapat ditemui.

Luar Kota

kereta api Banten Ekspres
Di Kota Cilegon terdapat dua buah terminal yaitu Terminal Utama Terpadu Nasional di Pelabuhan Merak dan Terminal Kota Cilegon di dekat pintu Tol Cilegon Timur. Di Kota Cilegon pun terdapat tiga stasiun penumpang yaitu Stasiun Cilegon, Stasiun Krenceng, dan Stasiun Merak. Layanan kereta api Kereta api Banten Ekspres dan Kereta api Patas Merak setiap hari melayani rute dari Kota Cilegon menujuDKI Jakarta.
Pintu keluar Stasiun Merak

Bandara & Helipad

Dulu terdapat apron bandara kecil dan hanggarnya di luar Kota Cilegon yang dibangun pada masa pembukaan pabrik baja Krakatau Steel tetapi sekarang sudah tidak dipakai lagi. Helipad di Kota Cilegon terdapat di tengah Kota Cilegon di samping gedung DPRD Kota Cilegon dan di dalam Kawasan Industri Krakatau Steel.
Feri di Pelabuhan Merak

Pelabuhan

Di Kota Cilegon terdapat tiga pelabuhan tetapi hanya satu pelabuhan yang berfungsi untuk mengangkut penumpang publik yaitu Pelabuhan Merak. Sedangkan Pelabuhan Cigading Habeam Centre digunakan untuk pelabuhan khusus arus logistik untuk Kawasan Industri Krakatau Steel dan Pelabuhan Tradisional Ciwandan digunakan untuk proses penangkapan dan pengapalan ikan.

Pendidikan

Pemerintah Kota Cilegon menyediakan sarana pendidikan dari sekolah dasar sampai perguruan tinggi. Kualitas dari pendidikan pun juga sangat bervariasi dari gedung mewah ber-AC sampai yang sederhana. Di Kota Cilegon banyak terdapat fasilitas pendidikan mulai dari sekolah dasar sampai dengan perguruan tinggi.
Singapore International School, Cilegon
Daftar Sekolah Menengah Atas ternama di Kota Cilegon:
  1. SMA Negeri 1 Cilegon
  2. SMA Negeri 2 Cilegon
  3. SMA Negeri 2 Krakatau Steel Cilegon
  4. SMA Negeri 3 Cilegon
  5. SMA Negeri 4 Cilegon
  6. SMA Negeri 5 Cilegon
  7. SHS Cilegon International Sch. Bonakarta
  8. SHS Singapore International
  9. SMK Negeri 1 Cilegon
  10. SMK Negeri 2 Cilegon
  11. SMK Negeri 3 Cilegon
  12. SMK Negeri 4 Cilegon
  13. SMK YPWKS Cilegon
  14. SMK YP Fatahillah 1 Cilegon
  15. SMK YP Fatahillah 2 Cilegon
  16. SMK Al-Islah Cilegon
  17. SMK Yabhinka Cilegon
  18. SMK Al-Khairiyah As-Syuhada Cilegon
  19. SMK Al-A'raaf Cilegon
  20. SMK Bina Bangsa Cilegon
  21. SMK Madinatul Hadid KS Cilegon
  22. SMAIT Raudhatul Jannah
  23. SMK YP "17" Cilegon
SMP Negeri 1 Cilegon, salah satu sekolah negeri yang ada di Kota Cilegon
Selain itu terdapat sekolah menengah pertama, diantaranya:
  1. SMP Negeri 1 Kota Cilegon
  2. SMP Negeri 2 Kota Cilegon
  3. SMP Negeri 3 Kota Cilegon
  4. SMP Negeri 4 Kota Cilegon
  5. SMP Negeri 5 Kota Cilegon
  6. SMP Negeri 6 Kota Cilegon
  7. SMP Negeri 7 Kota Cilegon
  8. SMP Negeri 8 Kota Cilegon
  9. SMP Negeri 9 Kota Cilegon
  10. SMP Negeri 10 Kota Cilegon
  11. SMP Negeri 11 Kota Cilegon
  12. JHS Cilegon International Sch. Bonakarta
  13. JHS Singapore International
  14. SMP IT Raudhatul Jannah
  15. SMP Mardi Yuana Cilegon
  16. SMP Al-Azhar Syifa Budi YPWKS Cilegon
  17. SMP YPKS Cilegon
  18. SMP Madani
Gedung Kuliah "Letter U" Kampus Cilegon
Universitas, Akademi, Sekolah Tinggi cilegon :
  1. Universitas Sultan Ageng Tirtayasa (Fakultas Teknik)
  2. Sekolah Tinggi Analis Kimia (STAK)
  3. Sekolah Tinggi Ilmu Ekonomi Al-Khairiyah
  4. Sekolah Tinggi Teknologi Fatahillah
  5. Politeknik Krakatau
  6. Sekolah Tinggi Teknik Ilmu Komputer Insan Unggul
  7. Universitas Terbuka Kota Cilegon
  8. PPPTIK AMC//CMA Bersinergi Dengan FT-Untirta

Media

Surat Kabar

Surat Kabar lokal di Kota Cilegon adalah Radar Banten (Jawa Pos)

Radio

  • 91,8 Top FM Cilegon
  • 95,3 FM Banten Radio
  • 96,9 FM Sam Radio
  • 102,0 Cilegon Mandiri FM (Siaran Pemda)
  • 105,2 Cilegon Pass FM
  • 107,7 Gema Suara Tercinta
  • 107,8 Flash Radio FM

Objek Wisata

Suasana Pantai Anyer
  • Gunung Batu Lawang
Gunung yang berada di wilayah Gerem – Merak, anda dapat melihat objek wisata berupa hamparan pegunungan granit yang memiliki bermacam-macam bentuk bebatuan sehingga membentuk semacam pintu selamat datang. Selain itu anda akan melihat hamparan pesisir barat Kota Cilegon dari Gunung Batu Lawang.
  • Gunung Batur
Gunung Batur terletak dikawasan kecamatan Pulomerak, dapat ditempuh sekitar 10 menit dari pusat Kota Cilegon dengan jarak ± 8 km. Adalah suatu daerah tujuan wisata Agro, yang berorentasi pada wisata minat khusus, seperti : Hiking, Camping Area, Study Flora dan Fauna, Jogging, Layang gantung atau gantole
  • Krakatau Country Club
Krakatau Country Club adalah pusat rekreasi di tengah Kota Cilegon yang dikelola oleh anak perusahaan Krakatau Steel. Disini terdapat fasilitas berbagai macam kolam renang, padang golf, hotel, spa & sauna, karaoke, lapangan tennis hingga rumah makan khusus ekspatriat.
Royal Krakatau Hotel, Cilegon
  • Pulau Merak Besar dan Merak Kecil
Pulau Merak Besar terletak tepat (± 500 M) didepan pelabuhan penyebrangan Merak – Bakauheni (ASDP), dengan luas areal sekitar 20 Ha. Dipulau ini terdapat Flora ( Aneka tumbuhan dan pepohonan ) dan Fauna (Kera, Ular, dan aneka Kerang ), alamnya masih asri dan tidak berpenghuni, terdapat pula bebatuan dan koral situs Tsunami Gunung Krakatau tahun 1883. Sedangkan Pulau Merak Kecil terletak ± 1 Km disebelah daya pelabuhan Merak dan dapat ditempuh ± 10 menit dengan menggunakan perahu motor. Pulau ini memiliki luas areal 4,62 Ha dan merupakan gugusan dari Pulau merak besar. Selain sebagai destinasi wisata di Kota Cilegon gugusan pulau ini juga menjadi gugus penghalang ombak laut yang melindungi Pelabuhan Merak dari terjangan ombak selat sunda.
  • Pantai Kelapa Tujuh
Pantai kelapa tujug terletak di Merak, kota Cilegon Banten 9 Km dari pintu Tol Jakarta – Merak, kearah utara pelabuhan penyeberangan Merak. Pantai ini menawarkan pesona pantai pesisir yang landai dengan pedagang kaki lima di sekitar pantai selain itu pantai ini menawarkan kerindangan yang khas karena tepat berada di balik lereng gunung Batur.
  • Pantai Pulorida
Objek wisata yang satu ini terletak di kota Cilegon, Provinsi Banten sekitar 4 km dari Pelabuhan Merak.
  • Pantai Anyer
Objek wisata pantai anyer sebenarnya masuk ke dalam wilayah Kabupaten Serang tetapi mengingat aksesbilitasnya yang lebih dekat dengan Kota Cilegon, pantai ini sering di masukkan sebagai objek destinasi wisata yang ditawarkan saat mengunjungi Kota Cilegon.

Kuliner

Sate Bandeng Khas Banten
Ayam Bekakak Kranggot
Kuliner khas Kota Cilegon yang terkenal adalah Ayam Bekakak Kranggot, Rabek, Sate Bandeng dan Sate Bebek Cibeber. Ayam Bekakak Kranggot bentuknya kurang lebih sama dengan ayam bakar biasa tapi bumbunya menggunakan bumbu khas banten yang sangat kaya akan rempah, sedangkan Rabek adalah sejenis semur daging kesukaan sultan banten yang awalnya berasal dari daerah arab (rabiq), sedangkan Sate Bandeng adalah panganan satai yang terbuat dari daging bandeng tumbuk yang terakhir adalah Sate Bebek Cibeber yaitu sejenis sate yang dibakar dengan bumbu panggang khas cibeber yang berwarna merah namum cukup manis. Disamping itu Kota Cilegon juga terkenal akan makanan khas lainnya yaitu Kue Jipang, dan Aneka kue ketan dari Kue Ketan Bintul yang khas hingga ketan siram yang manis.
Aneka Kue Ketan yang dapat dijumpai di Kota Cilegon
Selain itu seiring dengan perkembangannya yang di Kota Cilegon dapat dengan mudah di jumpai beraneka ragam makanan internasional maupun domestik. Restoran Internasional yang banyak terdapat di Kota Cilegon adalah restoran korea dan jepang mengingat banyaknya ekspatriat asal korea yang bekerja di Kota Cilegon.
0

about me

Diberdayakan oleh Blogger.

Translate

Pages

Flickr Images

Popular Posts

top navigation

Formulir Kontak

Nama

Email *

Pesan *